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Abstract

Understanding the diversification of biological lineages is central to evolutionary studies. To

properly study the process of speciation, it is necessary to link micro-evolutionary studies

with macro-evolutionary mechanisms. Micro-evolutionary studies require proper sampling

across a taxon’s range to adequately infer genetic diversity. Here we use the grass frogs of

the genus Ptychadena from the Ethiopian highlands as a model to study the process of line-

age diversification in this unique biodiversity hotspot. We used thousands of genome-wide

SNPs obtained from double digest restriction site associated DNA sequencing (ddRAD-seq)

in populations of the Ptychadena neumanni species complex from the Ethiopian highlands

in order to infer their phylogenetic relationships and genetic structure, as well as to study

their demographic history. Our genome-wide phylogenetic study supports the existence of

approximately 13 lineages clustered into 3 species groups. Our phylogenetic and phylogeo-

graphic reconstructions suggest that those endemic lineages diversified in allopatry, and

subsequently specialized to different habitats and elevations. Demographic analyses point

to a continuous decrease in the population size across the majority of lineages and popula-

tions during the Pleistocene, which is consistent with a continuous period of aridification that

East Africa experienced since the Pliocene. We discuss the taxonomic implications of our

analyses and, in particular, we warn against the recent practice to solely use Bayesian spe-

cies delimitation methods when proposing taxonomic changes.

Introduction

The impact of geographical and ecological variation on species diversification is central to evo-

lutionary studies and conservation biology [1–3]. Approaches that link rates of diversification

among lineages with several biogeographic and abiotic landscape characteristics, such as cli-

mate or topography, have strongly improved our understanding of the general trends and
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processes that drive speciation [4, 5]. A proper assessment of speciation mechanisms requires

connecting macro- and micro-evolutionary approaches [1, 4, 6]. Macro-evolutionary

approaches are popular in speciation studies, and most of our current knowledge of species

radiations takes root in them [7, 8]. In contrast, microevolutionary studies are less common,

requiring large sample sizes and adequate geographical coverage to properly assess diversity

within and between populations.

Speciation is a complex process by which an ancestral population becomes two or more dis-

tinct taxa. It is commonly described as a continuum encompassing all stages of divergence,

from panmictic populations to irreversibly isolated species [9]. The stage in this continuum at

which two populations are divergent enough to be called species is a much-debated topic. Mul-

tiple species concepts are currently used for different taxonomic groups, and are not necessar-

ily applied to similar stages in the speciation process [9, 10]. Because speciation is a

continuum, we need to assess intraspecific genetic variation at multiple points in the speciation

process to fully understand it. [9, 11]. The increasing availability of next-generation sequenc-

ing facilitates combining techniques that bridge the gap between macro- and micro-evolution-

ary scales [9, 12]. This expansion is critical for both basic biological research [1, 9, 13] and

conservation [10]. For example, using genomic tools to study intra-specific diversity may

reveal cryptic diversity in lineages for which morphology alone cannot predict the existence of

relevant conservation units [14].

Here we use a group of frogs from the Ethiopian highlands (genus Ptychadena) as a model

to study the speciation process at several stages, from intraspecific genetic variation to inter-

specific genetic divergence. The genus Ptychadena is widespread across Africa, and is one of a

few groups of frogs that managed to colonize oceanic islands [15, 16] as well as some of the

highest mountains in Africa [17]; these characteristics make the genus Ptychadena unique

among African amphibians. In the Ethiopian Highlands, these frogs have colonized a variety

of habitats, ranging from perturbed cultivation fields to forests and moorlands at more than

3,500 m [17].

The taxonomy of Ptychadena in Ethiopia is problematic [18]. In particular, they have a rela-

tively conserved morphology as well as local color polymorphism, making it difficult to define

diagnostic characters between the multiple species in the genus. A recent phylogenetic study of

Ethiopian Ptychadena [19] found surprisingly high levels of genetic differentiation between

populations of the endemic P. neumanni. Freilich et al. [19] used multiple nuclear and mito-

chondrial DNA (mtDNA) loci to infer phylogenetic relationships between populations and to

estimate the number of species of this genus in Ethiopia. They found that P. neumanni is a

complex of eight different species that includes five undescribed taxa as well as the species P.

erlangeri, P. nana, and P. cooperi. They also found that these species have defined elevational

ranges and are restricted to specific habitats. However, the study by Freilich et al. did not allow

for a thorough investigation of intraspecific variation and demographic history, because of the

limited phylogenetic information available in most nuclear loci they used.

In this study, we combine phylogenetic and population genomic approaches to study the

phylogeography, diversity, and demography of the P. neumanni species complex in the Ethio-

pian Highlands. Additionally, we aimed to identify any environmental and geographic effects

shaping the evolutionary history and speciation process in this group of frogs. The P. neu-
manni complex represents a useful model system to study the speciation process in one of the

most unique areas of Africa. We accomplished our research goals with the use of extensive

sampling across the Ethiopian Highlands and by sequencing thousands of putatively unlinked

nuclear loci obtained with double digest restriction site associated DNA sequencing (ddRAD-

seq). We also address important taxonomic issues in this and other groups of vertebrates that
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have become more prevalent in recent years, especially with the increased use and misuse of

coalescent species delimitation methods.

Materials and methods

Sample collection/Ethics statement

Our study was approved by the relevant Institutional Animal Care and Use Committee

(IACUC), at the New York University School of Medicine. Frogs were sampled according to

permits DA31/305/05, DA5/442/13 and DA31/454/07, provided by the Ethiopian Wildlife

Conservation Authority. We conducted multiple field collecting trips across Ethiopia between

2010 and 2016. Our efforts focused on the Ethiopian highlands, with sampling on both sides of

the Great Rift Valley (GRV). However, we also conducted trips to multiple lowland areas. We

collected most individuals by hand at night, usually when frogs were calling from bodies of

water such as rivers, creeks, ponds, cattle tanks, etc. We also collected many juveniles and tad-

poles in multiple developmental stages with the use of nets. We photographed each individual,

and performed euthanasia with ventral application of benzocaine. We euthanized tadpoles by

submersion in 10% ethanol. We sampled muscle or liver tissue for each specimen and pre-

served it in either 95% ethanol, cell lysis buffer, or RNAlater (Invitrogen). We fixed adult and

juvenile specimens with injection of 10% formalin and later preservation in 70% ethanol,

while we preserved tadpoles in 10% formalin. We deposited all specimens at the Zoology

Museum of the University of Addis Ababa, Ethiopia. Tissue samples are deposited at the Ver-

tebrate Tissue Collection, New York University Abu Dhabi (NYUAD). In total, we collected

289 individuals from 129 localities (S1 Table and S1–S3 Figs).

In this study we follow the nomenclature of Freilich et al. [19]. Since these authors did not

perform a detailed morphological analysis of their samples, they did not formally describe the

putative species they discovered, but instead assigned numbers to each lineage (eg. P. cf. neu-
manni 1, P. cf. neumanni 2, etc.). Recently Smith et al. [20] assigned new names to multiple

Ptychadena from Ethiopia. However, the new names lack appropriate diagnostic characters as

defined by the International Commission on Zoological Nomenclature [21]. As a result, all the

proposed new species’ names should be considered as nomina nuda, according to the Interna-

tional Commission on Zoological Nomenclature [21] and are disregarded by us in the present

paper. See Discussion for a more detailed description regarding issues with the taxonomy of

this group.

DNA extraction and PCR amplification

We used one of several methods to extract genomic DNA from tissue samples: DNeasy blood

and tissue kit (Qiagen, Valencia, CA), using Serapure beads [22], or by standard potassium

acetate extraction. We measured DNA concentration with a Qubit fluorometer (Life Technol-

ogies) so that we could standardize all DNA sample concentrations.

Because it is difficult to assign tadpoles to a taxonomic group while in the field, we barcoded

most tadpoles we collected, as well as all adult specimens and juveniles. We sequenced a frac-

tion of the 16s rRNA mitochondrial gene with the primers LX12SN1a and LX16S1Ra [23] or

the 16Sar and 16Sbr primers [24]. We amplified the 16s gene with polymerase chain reaction

(PCR) using Taq polymerase (Invitrogen) in reaction volumes of 25 μl. We performed the

PCR with an initial denaturation temperature of 96˚C (2 minutes), a subsequent 35 cycles of

denaturation at 94˚C (15 seconds), annealing at 50˚C (1 minute), and an extension at 72˚C (2

minutes), followed by a final extension at 72˚C (10 minutes). We shipped the unpurified PCR

products for sequencing at BGI Tech Solutions (Hong Kong).
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Genetic barcoding and phylogenetic analysis of mtDNA

We used the 16s dataset of [19] to assign specimens to a particular PtychadenamtDNA lineage.

We manually trimmed each sequence in the program Geneious v9.1.6 (Biomatters Ltd., Auck-

land, NZ) using the raw chromatogram files. We included an additional 87 samples of Ethio-

pian Ptychadena obtained from Genbank (S2 Table). We performed nucleotide alignments in

MAFFT version 7 [25] and created a final 16s alignment of 516 bp. We then used the Bayesian

information criterion (BIC), implemented in PartitionFinder v1.1.1 [26], to select the best-fit

model of nucleotide evolution for our dataset.

We performed Bayesian phylogenetic inference (BI) using Mr. Bayes v3.2.2 [27] on the

CIPRES Science gateway server [28]. The BI analysis consisted of four runs of 107 generations,

with four chains (three heated, one cold) and sampled every 1,000th generation. We checked

for convergence of each run in Tracer v 1.6 [29] by visually assessing overlap in likelihood and

parameter estimates between runs, as well as effective sample sizes and potential scale reduc-

tion factor (PSRF) value estimates for each run. Based on the PSRF, individual runs converged

by 105 generations. We therefore discarded the first 25% of each run as burn-in, combined the

runs and then visualized the final tree in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/

figtree/).

ddRADseq library preparation and sequencing

We used ddRAD-seq to obtain genome-wide SNPs of many individuals of Ethiopian Ptycha-
dena. We digested genomic DNA for 7 hours at 37˚C with the enzymes SbfI and MspI [30].

We then purified DNA fragments using Serapure beads [22], ligated adapters with attached

barcodes [31] and pooled samples in groups of eight (number of unique barcodes; S3 Table).

We size-selected each pooled library of barcoded samples between 400 and 550 bp using a Pip-

pin Prep (Sage Science, Beverly, MA, USA), and then amplified the size-selected pooled librar-

ies using PCR to attach unique Illumina indices [31] (S3 Table). We determined fragment size

and concentration for each library on a Bioanalyzer 7500 with a high sensitivity DNA chip

(Agilent, Santa Clara, CA, USA), and checked library quantity with quantitative PCR. We then

pooled all libraries and sequenced them with an Illumina HiSeq2500 (100 bp paired-end

reads) at the Genome Core Facility of New York University Abu Dhabi, United Arab

Emirates.

ddRADseq data analyses

We trimmed restriction sites with the FASTX Toolkit [32] and then used ipyrad 0.6.17 [33] to

assemble loci de novo and create SNP datasets. In ipyrad, we discarded all sequences with an

average phred score offset of less than 33, and with more than 5 low quality bases per read. We

then used an 85% clustering threshold and kept all other parameters at default values. We

required each locus to be present in at least 50% of all individuals. Because preliminary results

showed great divergence between the different species of Ptychadena, as well as few shared loci

between species, we performed a second run of the ipyrad pipeline with the same parameters

as above to create three different datasets, each including only samples that grouped with the

cooperi, erlangeri, or nana groups as defined by [19].

After quality filtering, we retained a total of *158 million sequencing reads, with highly

variable coverage across individuals (mean = 1.60 million, sd = 0.6 million, S3 Table). This

resulted in a mean of *11,400 RAD-tags (sd = 2,000) per individual. Of the three SNP data-

sets, we obtained between 800 and 2918 polymorphic loci and between 28,000–36,000 SNPs

(S3 Table).
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Phylogenetic analysis of genome-wide SNP data

We used the Bayesian Information Criterion (BIC) in PAUP� v.4.0.a151 [34] to estimate the

best model of evolution for our concatenated ddRADseq dataset (GTR + I + G). We then

inferred evolutionary relationships using maximum likelihood (ML) implemented in RAxML

v8 [35]. We performed RAxML with rapid bootstrapping, implemented in the CIPRES portal

[28]. We ran RAxML with all samples of Ptychadena (n = 97) as well as for each of the cooperi,
erlangeri, and nana species groups.

Species-tree estimation of SNP data

We used SVDquartets [36], implemented in PAUP� v.4.0.a151 [34], to infer phylogenetic rela-

tionships between the different genetic clusters identified in the STRUCTURE and ML analy-

ses. We ran the SVDquartets analysis separately on each one of the different species groups

(cooperi, nana, and erlangeri). In SVDquartets, we used all possible quartets for species tree

inference, with 100 bootstrap replicates to assess support. Additionally, we visualized conflict-

ing phylogenetic signal from the SNP data by constructing phylogenetic networks from the

SNP data with the use of the NeighborNet algorithm in SplitsTree 4 [37, 38] with heterozygous

sites averaged.

Population structure and nucleotide diversity

In order to examine genetic structure among individuals and species without a priori infer-

ences, we used the STRUCTURE software [39]. In this case we used a single random SNP

from each RADseq locus. We performed this analysis separately on each of the three different

species groups of P. neumanni (cooperi, nana, and erlangeri) as only a small number of loci

were recovered across all samples (S3 Table). For each group, we initially performed a single

STRUCTURE run to infer lambda, with the number of populations (k) set to one. We then

performed STRUCTURE using the admixture model and correlated allele frequencies, a con-

stant value of lambda, for a burn in period of 50,000 generations, followed by 50,000 additional

generations. We ran STRUCTURE using a range of k values (1–12) with five replicates each.

With the STRUCTURE output, we used the ΔK method [40] to identify the most likely num-

ber of clusters on each of the different species groups. We also followed the recommendation

of Meirmans [41] to use the highest number of genetic clusters that makes biological sense.

Using the SNP dataset, we computed the amount of fixed, shared, and private polymorphisms

for each population or species. We computed this separately for each of the species groups

recovered in the ML analysis.

Demography

To assess whether genetic clusters displayed evidence of variation in past population sizes, we

estimated parameters for a two-epoch demographic model. We used the likelihood framework

implemented in fastsimcoal2.5 [42, 43] which is based on the allele frequency spectrum (AFS).

The model included five parameters (three effective population sizes allowed to change at two

different times in the past). We included all population clusters with at least four individuals in

the analysis.

We ran the ipyrad pipeline including only individuals from species or populations for

which we had at least four individuals, and only included loci found in at least 50 percent of

those individuals. We projected the folded AFS down in each cluster to increase the number of

segregating sites with the use of a custom python script (available at https://github.com/

isaacovercast/easySFS). We obtained parameters with the highest likelihood after 40 cycles of
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the algorithm, starting with 50,000 coalescent simulations per cycle, and ending with 100,000

simulations. We replicated this procedure 50 times and retained the set of parameters with the

highest final likelihood as the best point estimate. We estimated 95% confidence intervals (CI)

using a non-parametric bootstrap procedure, creating 100 pseudo-observed AFS by sampling

with replacement from the observed allele frequency spectrum and estimating parameters as

described before.

As a secondary estimate of demographic scenarios, we also used Stairway v2., a software

that fits a flexible multi-epoch demographic model similar to a skyline plot and relies on the

AFS [44]. This method facilitates exploratory analyses by not making assumptions about the

number of past bottlenecks or expansions. We used the default parameters as recommended,

running 200 bootstrap replicates to estimate 95% confidence intervals.

Results

Estimates of evolutionary relationships

The mitochondrial locus 16s proved useful to distinguish individuals between the different

putative species and species groups of Ptychadena. However, many branches received low pos-

terior support and proved of poor use for inferring phylogenetic relationships, but very useful

as a barcoding tool (S4–S6 Figs).

The ML analysis of the concatenated SNP dataset recovered three well supported groups

(Fig 1), which partially correspond to those recovered by Freilich et al. [19]. The majority of

the deeper nodes in our phylogeny had strong support, with most nodes showing 100% boot-

strap support. We recovered Ptychadena cooperi and P. cf. neumanni 5 as sister to one another

(cooperi group; Fig 1), and together they form the sister group to all other Ptychadena analyzed.

These two species are separated by the deep gorges of the Blue Nile River in northern Ethiopia.

Individuals of P. cooperi from the east and west of the Great Rift Valley form reciprocally

monophyletic groups, suggestive of genetic structure. Hereafter, we refer to this lineage as the

cooperi group.

We recovered all remaining members of the P. neumanni species complex as a monophy-

letic group composed of two main lineages. The first one, which we refer to from now on as

the nana group, consists of species that generally inhabit the plateaus and mountain habitats

above 2,500m. It is composed of P. nana, P. cf. neumanni 2 and P. cf. neumanni 3, as well as

two novel genetic lineages (Fig 1). The most basal split in this lineage separates three mountain

populations from the eastern side of the GRV from P. cf. neumanni 2, which is the only taxon

in this group to be found on both sides of the GRV, and a single individual from the vicinity of

the town of Gecha, locate in SW Ethiopia. The individual from Gecha (P. cf. neumanni Gecha)

was collected in the southwestern part of the country, in a habitat (tropical forest) and at an

elevation (2,200m) unusual for this group, which is usually found in grasslands above 2,500m.

The three taxa endemic to the eastern highlands are P. cf. neumanni 3 (from the western part

of the Bale mountains), P. nana (from the eastern part of the Bale mountain and the plateau

east of Bale) and a novel taxon which seem restricted to Mount Gugu in the northeastern most

part of the Arsi plateau (P. cf. neumanni Mt Gugu). Although this group is well supported,

relationships among the individual lineages are not, particularly for the populations of the east-

ern highlands (Fig 1).

The last group (erlangeri group) consists of six distinct lineages, which are found in tropical

forests or grasslands at elevations usually below 2,500m. It is composed of P. erlangeri, P. har-
enna, P. cf. neumanni 1 and P. cf. neumanni 4, as well as two newly discovered populations

(Fig 1). Three lineages are restricted to the west of the GRV, two to the east and one species (P.

erlangeri sensu stricto) is found on both sides. The western lineages include the widespread
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grassland species P. cf. neumanni 1 and two novel lineages from the forests of the southwest,

one found in the forests from the town of Gecha to near Jimma (P. cf. erlangeri Gecha), and a

lineage distributed between the towns of Metu and Bedele (P. cf. erlangeri Metu). In the east, P.

cf. neumanni 4 is widely distributed in the forests covering the southern flanks of the eastern

highlands. We recovered P. erlangeri from both sides of the GRV as sister to two individuals

tentatively assigned to P. harenna from the Harenna forest in SE Ethiopia. We tentatively

assigned these two individuals to P. harenna as the 16s phylogeny group them with topotypic

samples of this species from Genbank and because they were collected near the type locality.

Fig 1. Maximum likelihood estimate (ML) of phylogenetic relationships in the Ptychadena neumanni species

complex, inferred from the ddRADseq concatenated SNP dataset. Black circles represent nodes with>95%

bootstrap support. Inset frogs are representatives of each species group. Frogs are relatively at the same scale.

https://doi.org/10.1371/journal.pone.0190440.g001
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Because only a few loci were shared across all samples when we included all samples of Ethi-

opian Ptychadena, we performed the ML analyses for each of the three species groups sepa-

rately (Fig 2, left panel). Because we did not include any outgroups (in order to recover as

many loci as possible), these trees were rooted with the most divergent member of each group,

as inferred by the ML analysis of all samples. These analyses are mostly in agreement with the

ML analysis of all taxa, and the support values for the nodes are usually higher. The only differ-

ences between the topologies are the placement of P. cf. erlangeri Metu, which is recovered as

sister to all other members of the erlangeri group, with the exception of P.cf. erlangeri Gecha

(vs. sister to P. cf. neumanni 1), and the placement of P. cf. neumanni 4, which was recovered

as sister to P. cf. neumanni 1 (vs. sister to most other lineages), but with low support (Fig 2c).

Population structure

We recovered multiple genetic clusters in each of the Ptychadena species groups using the

STRUCTURE analyses (Fig 2, center panel). In the cooperi group, we found the most support

for two genetic clusters, which correspond to P. cf. neumanni 5 and P. cooperi. If three genetic

clusters were assumed, populations of P. cooperi east and west of the GRV were split from each

other (Fig 2a, center panel).

We found the strongest support for six genetic clusters in the nana group (Fig 2b, center

panel); Here, we found distinct genetic clusters for P. cf. neumanni 3, P. nana, P. cf. neumanni
Mt. Gugu, and three different groups of P. cf. neumanni 2. The genetic clusters of P. cf. neu-
manni 2 correspond to the populations on each side of the GRV as well as the lone individual

from the town of Gecha in southwestern Ethiopia (P. cf. neumanni Gecha). We found low lev-

els of admixture between genetic clusters of P. cf. neumanni 2 across the GRV but none

between the individual from Gecha and other populations. One individual of P. nana (15.163)

appears to be a hybrid between this species and P. cf. neumanni 3. Apart from this individual,

we found little evidence for admixture between groups.

In the erlangeri group, six genetic clusters received the strongest support (Fig 2c, center

panel), which correspond to the lineages recovered in the ML analyses. We found low levels of

admixture between P. cf. erlangeri individuals from Gecha and Metu in southwestern Ethiopia

and between P. erlangeri and P. cf. neumanni 1 in a single individual (13.169; Fig 2c).

Species-trees and SplitsTree networks

Using multispecies coalescent species-tree analyses in SVDquartets, we recovered evolutionary

relationships that were slightly different from those obtained in the RAxML analysis (Fig 3, left

panel). No differences were found between the topologies of the SVDquartets analysis and the

ML analysis of the cooperi group (Fig 3a, left panel). In the nana group, the SVDquartets tree

places P. nana as the earliest split in the group (Fig 3b, left panel), while it was sister to P. cf.

neumanni 3 in the ML analyses (Figs 1 and 2). In the erlangeri group, the SVDquartets topol-

ogy differed from the ML phylogenies, as the SVDquartets recovered P. cf. neumanni 1 as the

earliest split in this species group (vs. P. cf. erlangeri Gecha as the earliest split in the ML analy-

sis), followed by P. cf. neumanni 4 as the next split (vs. sister taxa to P. cf. neumanni 1 in the

ML analysis). The SplitsTree network analyses of the three species groups identified very simi-

lar patterns as those obtained from the ML and STRUCTURE analyses of the same data (Fig 3,

center panel).

Nucleotide diversity and demography

Each of the different species and populations of Ptychadena had highly variable levels of nucle-

otide diversity (Fig 3, right panel; S5 Table). We found the highest number of private
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Fig 2. ML phylogeny, STRUCTURE plot, and sampling localities for each of the three species groups. A) cooperi
group. B) nana group. C) erlangeri group. Left panel—ML phylogenetic estimate of concatenated ddRADseq SNP data.

Central panel—STRUCTURE plot for each of the species groups obtained using a single SNP per locus. Right panel—

Sampling localities for individuals used in the ddRADseq study.

https://doi.org/10.1371/journal.pone.0190440.g002

Cryptic diversity in Ethiopian Ptychadena

PLOS ONE | https://doi.org/10.1371/journal.pone.0190440 February 1, 2018 9 / 23

https://doi.org/10.1371/journal.pone.0190440.g002
https://doi.org/10.1371/journal.pone.0190440


polymorphisms in P. cf. neumanni 5 (*75%), yet private polymorphisms were abundant in all

species and populations. The numbers of fixed polymorphisms differ greatly among groups

and were the highest (*35% or above) for the northern population of P. cooperi, P. cf. neu-
manni from Gecha and Mt. Gugu, P. nana, P. harenna, P. cf. erlangeri Gecha, and P. cf. neu-
manni 4. Yet, all populations contained fixed differences as well as high proportions of private

alleles, suggestive of high levels of differentiation.

We found consistent estimates of current effective population sizes and demographic tra-

jectories between the programs fastsimcoal and Stairway (Fig 4). The majority of taxa and pop-

ulations showed evidence for population contractions starting between 500,000 and 100,000

years ago, assuming a mean mutation rate of 6.98.10−10 substitutions/year, and a generation

time of 2 years [19]. The only exceptions to this general trend were P. nana and the P. cooperi
population north of the GRV. The northern P. cooperi population displayed evidence for a

Fig 3. Species tree estimates, SplitsTree networks, and polymorphisms in the P. neumanni species complex. A) cooperi group.

B) nana group. C) erlangeri group. Left panel—Species-tree estimate computed in SVDquartets for each of the species groups.

Central panel—SplitsTree networks for each SNP dataset. Right panel—Distribution of fixed, shared, and private polymorphisms

for each species group.

https://doi.org/10.1371/journal.pone.0190440.g003
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pronounced population expansion approximately 2 mya, followed by a plateau. This scenario

was supported by both analyses, however, the population expansion was not as pronounced in

the Stairway analysis. In P. nana, both analyses show no strong variation in population size

across time. For three species (P.cf. neumanni 1, 4 and 5), both analyses show a population

increase either between 5 and 3 mya (P.cf. neumanni 1, 4) or *10 mya (P.cf. neumanni 5), fol-

lowed by a population decline in the last 500,000 to 100,000 years (Fig 4).

Discussion

Defining discrete entities (species) along the speciation continuum is a challenging task.

Recent studies have highlighted issues when defining species that are in “gray zones”, that is,

where speciation is still ongoing [9, 11, 45]. To adequately study speciation, it is fundamental

to first quantify the extent of genetic variation and divergence in the groups of interest [4].

This quantification benefits from using both phylogenetic and population genetics approaches

that can span the various stages of speciation. Another challenge lies in appropriate sampling.

Poor sampling can result in spurious inferences about genetic variation, demography, and

Fig 4. Demographic history of populations in the P. neumanni species complex. A- cooperi group. B–erlangeri group. C–nana group. Blue and red

lines represent demographic history inferred with fastsimcoal and Stairway, respectively. Dashed lines represent confidence intervals obtained in

Stairway.

https://doi.org/10.1371/journal.pone.0190440.g004
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phylogenetic relationships [4, 46]. Assessing variation at a large number of unlinked loci and

at a species-wide geographical scale is pivotal for adequately carrying out these types of studies.

In this study our aim was to understand the phylogeography, demographic history, and

genetic variation in the genus Ptychadena across the highlands of Ethiopia, in order to connect

microevolutionary processes with the macroevolutionary trends that drive speciation. We

accomplished this by conducting dense sampling across the entire Ethiopian Highlands,

including all known biogeographic zones and habitats, in concert with sequencing thousands

of loci from across the genome.

Phylogeography and demographic history of highland Ptychadena
Based on our demographic and phylogenetic analyses, we propose a scenario for the diversifi-

cation of Ptychadena in the Ethiopian highlands, in which episodes of allopatry appear to be

the main driver of speciation events. The ancestor of the cooperi group split from the rest of

the P. neumanni complex early in the diversification of the group. This split was estimated to

have occurred between 5.8 and 10mya [19]. After the separation of the cooperi group from the

nana + erlangeri groups, the lowlands of the Blue Nile River split the ancestor of P. cooperi and

P. cf. neumanni 5. The later species is the only member of the neumanni complex north of the

Blue Nile, and we found no genetic structure between samples from across the range of the

species, which is found as far north as the Simien Mountains (S1 Fig). The Blue Nile River has

played an important role as a biogeographic barrier in the diversification of other taxa; the tree

frog Leptopelis yaldeni is endemic to the highlands north of the Blue Nile, and this river has

shaped the genetic structure of two other frogs (Amietia nutti and Xenopus clivii [47, 48]), as

well as that of several mammals, including the Ethiopian wolf, the gelada baboon and rodents

of the genera Otomys and Stenocephalemys [49–52]. Colonization of new areas seems to be the

main driver of genetic differentiation in P. cooperi, as the population west of the GRV probably

evolved from an ancestor that originated in the eastern highlands. This scenario is supported

by the mtDNA analysis of Freilich et al. [53], who found that all western P. cooperimitochon-

drial haplotypes were nested within the eastern haplotypes. Additionally, our demographic

analyses show a possible bottleneck event in P. cooperi when it colonized the western highlands

(Fig 4).

After their divergence from the cooperi group, the nana and erlangeri groups probably

evolved in allopatry from one another, following the separation of their most recent common

ancestor by the GRV. This hypothesis is based on the fact that most of the biological diversity

of each of these two groups is found on opposite sides of the GRV (west for the erlangeri group

and east for the nana group). In addition, the earliest lineages to diverge within each group are

west of the GRV for the erlangeri group and east for the nana group (however, the root of the

nana group is unresolved on the ML phylogeny). Members of both lineages subsequently

crossed the GRV at later dates, after the original divergence of the two groups. This scenario is

in contrast to that proposed by Freilich et al. [19], who suggested that the nana and erlangeri
groups diverged from each other through niche diversification at the time of the Miocene-Plio-

cene junction. This assumption was partially based in the non-overlap in the elevational distri-

bution between the groups and an incomplete population sampling for both the nana and

erlangeri group.

Following the original split between the nana and erlangeri groups, additional migration

followed by isolation must have occurred to account for the geographic distribution of the lin-

eages constitutive of each group. However, the reconstruction of this scenario is dependent on

the accuracy of our phylogenetic inference and in particular on the position of the root for

each group. In the nana group, the ML and the SVDquartets analyses give conflicting results.
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In the ML topology (Figs 1 and 2) the earliest split separates P. cf. neumanni 2 and P. cf. neu-
manni Gecha from the three eastern lineages (although with no statistical support), while the

SVDquartets analysis firmly root the group in the east, placing P. nana as the earliest lineage to

diverge, while the western populations are nested within the eastern lineages (Fig 3). Which-

ever the case, the number of migration events across the GRV remain the same (two) for both

scenarios. If the ML tree is correct, an early migration from east to west by the ancestor of the

P.cf. neumanni 2 + P. cf. neumanni Gecha was followed by a more recent migration of P.cf.

neumanni 2 to the east. If the SVDquartets tree is correct, the migration event of the ancestor

of P.cf. neumanni 2 + P. cf. neumanni Gecha to the east occurred later in the history of the

nana group, either with two independent migration events from east to west (leading first to

the P. cf. neumanni Gecha lineage and then to the western populations of P.cf. neumanni 2) or

a migration from the east to the west, and a second migration from west to east by the ancestor

of P. cf. neumanni 2 in the eastern highlands.

In the erlangeri group, the minimum number of dispersal events across the GRV is three. In

this group, three lineages are represented in the east: P. harenna, P. cf. neumanni 4 and popula-

tions of P. erlangeri. The populations of P. erlangeri from either side of the GRV are not geneti-

cally distinct from each other, suggesting current gene flow across the GRV, and the eastern

samples are mitochondrially nested within western haplotypes, indicating a recent west to east

migration [53]. In addition to the recent spread of P. erlangeri across the GRV, the ML and the

SVDquartets phylogenies imply two migrations from west to east, one leading to P. harenna
and one leading to P. cf. neumanni 4. Altogether our phylogenetic reconstructions indicate

that species of Ptychadena have crossed the GRV on multiple occasions during the Pliocene

and Pleistocene, and that each event of migration was followed by isolation, genetic differenti-

ation and, in some cases, speciation. Thus it appears that the GRV acted as the main driver of

speciation in this group. We speculate that migration across the GRV occurred during climatic

periods that were colder and wetter, and when the climate became drier and hotter (as it is

now), isolation and speciation took place. This scenario is consistent with what is known of

the climate of east Africa over the last 8my. Palynological and paleontological analyses demon-

strated that the climate of east Africa has been remarkably unstable, showing that cold and wet

periods alternated with dry and hot periods [54]. These climatic changes, combined with the

presence of a major topographic barrier (the GRV), constitute the perfect circumstances for

the generation of biodiversity at different levels, which probably correspond to different epi-

sodes of climatic oscillations. Our scenario is consistent with a number of studies which dem-

onstrated an important role of the GRV as a biogeographic barrier, in particular in frogs [47,

48, 53, 55], mammals [49–52], and plants [56].

The GRV does not explain the divergence of lineages that occupy the same highlands on

either side of the GRV. In the nana group, three lineages are restricted to the eastern highlands:

P. nana, P. cf. neumanni 3 and P. neumanni Mt Gugu. These lineages tend to be restricted to

grassland areas at elevations from 2,400 to 3400m. It is possible that the ancestor of these three

lineages was more widespread throughout the eastern highlands, but the reduction of Afro-

alpine habitats since the Pliocene probably separated these populations, which were thus lim-

ited to the highest elevations, i.e. Mt. Gugu and the Bale Mountains. A similar pattern has been

reported for other taxa. For example, the giant Lobelias (Lobelia giberroa) and the Ethiopian

wolf (Canis simensis) occur in the same disjunct areas as these three frog species, and their dis-

tribution and genetic diversity have been affected by periods of warmer climate and habitat

fragmentation [49, 56]. The Bale Mountains have experienced multiple episodes of glaciation

[57], which lowered the current vegetation limit by about 1,000 m [17]. We hypothesize that

the range of the ancestor of these two species was split during these periods of glaciation, and

that they reconnected after the recession of glaciers, which started approximately 13,000 to
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14,000 years before present [58]. The ranges of P. nana and P. cf. neumanni 3 overlap near the

town of Dinsho, but the two species appear to be mostly confined to the eastern and western

sides of the Bale Mountains, respectively (S2 Fig). Hybridization occurs between these two lin-

eages, but appears to be rare, which would suggest some form of reproductive isolation (Fig 2;

[19]).

In the erlangeri group, four lineages differentiated west of the GRV (P. erlangeri sensu
stricto, P. cf. erlangeri Gecha, P. erlangeri Metu and P. cf. neumanni 1). All these lineages occur

at elevations below 2,500m (S3 Fig; S1 Table) and seem to favor forested habitats (with the

exception of P. cf. neumanni 1 which is also found in grassland habitats under 2,500m). We

propose that the ancestor of these lineages was a forest species that was widespread across the

southwest of Ethiopia, when the climate of east Africa was colder and more humid. The wet-

dry climatic cycles of the Pliocene and Pleistocene could have fragmented the original forest,

resulting in isolation, genetic differentiation and speciation. When forest habitats were more

widespread, species dispersed, resulting in overlapping distributions as observed today. It is

noteworthy that these episodes of dispersal were not followed by extensive gene flow, suggest-

ing the presence of reproductive barriers among those taxa. This scenario emphasizes the role

of the forests of the Ethiopian southwest as an important source of biodiversity, which deserve

urgent conservation. Multiple lineages of endemic amphibians occur in the same areas as the

members of the erlangeri group; for example, the caecilian Sylvacaecilia grandisonae is endemic

to the same forests in SW Ethiopia while the population of the tree frog Leptopelis gramineus
from this region is genetically distinct from the rest of Ethiopia, and might warrant species sta-

tus [55].

In addition of inferring genetically distinct units, our genome-wide SNP dataset allows us

to make demographic inferences in these groups of frogs, which in turn can shed light about

the role of multiple climatic and geologic events in shaping the diversification of the group.

The demographic analyses of the P. neumanni species complex suggest that a continuous

reduction of population size occurred in most species of highland Ptychadena. In the majority

of taxa, our results show a constant decline in population size, which started between 500,000

and 100,000 years. These results are consistent with a constant decline of suitable habitats or

high stochasticity in environmental conditions over the last half million years, which would

impair population recovery. However, our demographic estimates are in contrast to those of

Freilich et al. [53], who showed an increase in population size in several species of Ptychadena
since the Pleistocene. Multiple cycles of glaciation in northern latitudes during the last 3 mil-

lion years resulted in periods of aridity in eastern Africa, which have been linked to the evolu-

tion of African hominids [54]. These glacial cycles have played a major role in shaping the

distribution and demography of a multitude of taxa, including plants [56], birds [59], mam-

mals [49] and frogs [55]. We hypothesize that these glacial-interglacial cycles might be

involved in the continuous reduction in population size across most species in our study, as

well as in isolating many of the different populations.

Evolutionary patterns, processes, and speciation in Ptychadena
Our study shows that multiple species and populations of Ptychadena from the Ethiopian high-

lands are at different stages of the speciation continuum. We find cases where little to no

genetic variation can be found across proposed geographic barriers, such as in P. erlangeri pop-

ulations across the GRV. We find other instances in which particular species show population

structure across a geographic barrier, as in both P. cooperi and P. cf. neumanni 2 across the

GRV, but with no obvious morphological differences. In other cases, speciation appears to be

at later stages, with little to no hybridization between taxa occurring in sympatry, which is one
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of the most universally recognized properties of biological species [60]. The only case that we

have found where members of the same species groups co-occur and interbreed is in the Bale

Mountains National Park, near the town of Dinsho. In this area P. cf. neumanni 3 and P. nana
occur in sympatry, and we found one individual (15.163) that appears to be a hybrid between

the two species. A similar case was found by Freilich et al. [19]. However, the lack of a wide

hybrid zone between these two taxa might be the result of effective reproductive isolation. In

other cases, reproductive isolation appears complete, with a total lack of hybridization. For

example, the species P. cooperi is found in the highlands east and west of the GRV, where it is

found in sympatry with several other members of Ptychadena. In the western highlands we

found P. cf. neumanni 1 and P. cf. neumanni 2 in sympatry only near the town of Holeta, west

of Addis Ababa. These taxa are not each other’s closest relatives and we found no evidence of

hybridization between them. It is notable that these two taxa are extremely hard to distinguish

morphologically, despite their high degree of genetic divergence. In southwestern Ethiopia,

near the town of Gecha, P. cf. neumanni Gecha and P.cf. erlangeri Gecha are found in sym-

patry, while in the erlangeri group there are multiple instances of species occurring in sympatry

(S3 Fig), yet we only find a single case where there appears to be any hybridization between the

different taxa. In this case, and individual that is nested with P. cf. erlangeri Gecha in the SNP

analysis (16.344) has a P. erlangeri mtDNA haplotype (S6 Fig). In all other cases the reproduc-

tive barrier between these taxa appears complete, which might justify assigning them species

status.

In their early studies, Freilich et al [19] suggested an important role of ecology as a driver of

speciation in this group. Our study however suggests that allopatry, which can be considered

the null hypothesis when studying the speciation process, can explain the diversification of

Ethiopian highland Ptychadena. It remains that the altitudinal segregation of the lineages is

real, although not as strict as previously proposed. In the context of the allopatry scenario pro-

posed above, it is likely that the ancestor of the erlangeri group was a tropical forest species,

since most taxa within this group are found in this habitat, while the ancestor of the nana
group was a mountain grassland species. Our extensive sampling across the entire Ethiopian

highlands suggest that following this early habitat specialization, which coincide with an altitu-

dinal specialization (<2,500m for the erlangeri group and>2,500m for the nana group), some

lineages have adapted to novel ecological conditions. In the erlangeri group, all species tend to

favor forest clearings with the exception of P. cf. neumanni 1, which colonized grasslands in

plateaus at elevations lower than 2,500m. In the nana group, all species are found in grassland

habitats above 2,500m, with two exceptions. The P.cf. neumanni Gecha population is found in

forest habitat at a lower elevation (*2,200) than the typical habitat of other members of the

group. The other exception is P. cf. neumanni 3, which can be found at elevations as high as

3,400m in the Bale Mountains, but is also found in the Harenna forest, at elevations of about

2,395m (S2 Fig). Thus it appears that the nana and erlangeri groups have generally retained the

ecological niche of their ancestor, but that adaptation to novel conditions has occurred in each

lineage. Although this does not seem to be common, it emphasizes the adaptability of Ptycha-
dena species to novel habitats. This genus is known for its extraordinary colonizing abilities, as

is found in all habitats in sub-Saharan Africa, and has even spread to oceanic islands [15, 16].

Issues with recent taxonomic changes in Ethiopian Ptychadena
Our analysis is consistent with the work of previous authors [19], who showed that the strong

genetic differentiation found in highlands Ptychadena supports the existence of multiple unde-

scribed species in Ethiopia. Freilich et al. [19] decided not to assign names to the multiple

genetic lineages they recovered. Their decision was primarily based on the lack of
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morphological characters useful to diagnose the different putative species, but also because

their study lacked topotypic material for several of the species (personal communication).

Recently, Smith et al. (2017) used the same dataset provided by Freilich et al. [19] and Men-

gistu [61], with the inclusion of a few additional samples, and assigned names to the different

lineages recovered by Freilich et al. [19]. In their article, Smith et al. used the multispecies coa-

lescent as the only evidence to diagnose the multiple putative new species. This alone is a

major problem for their species designations (see below), but their nomenclature also has sev-

eral major flaws that we describe below.

The morphological characters that Smith et al. use to diagnose the new taxa almost

completely overlap between species of Ethiopian Ptychadena (e.g. size, dorsal and ventral col-

oration, longitudinal ridges, etc.), and thus are not, by definition, diagnostic. The type locality

of P. neumanni, restricted by Perret [62] to “Gadat, Gofa, Ethiopia”, is in the southwestern part

of the country (6.33N, 36.83E), and no genetic material is available from topotypic specimens.

It is then not possible to assign the name P. neumanni to individuals that group with P. cf. neu-
manni 1, as suggested by the authors, as this taxon is not known from the type locality of P.

neumanni (Fig 2, right panel; S2 Fig and S1 Table). The issue is further complicated because

the type series of P. neumanni included several specimens that were later described as P. nana
by Perret [62], and it is possible that individuals of other species are also represented in the

type series (personal observation). Additionally, Smith et al. resurrected the name P. largeni
Perret, 1994 as a distinct species, and assigned all specimens that grouped with P. cf. neumanni
2 to this taxon, without specifying their reason to do so. The area around Addis Ababa, which

is the type locality of P. largeni [63], harbors two different taxa (P. cf. neumanni 1 and P. cf.

neumanni 2; Fig 2, right panel, S1 Fig and S1 Table). Unless a morphological comparison is

carried out, or DNA from the holotype of P. largeni is extracted and analyzed, it is impossible

to confidently assign the name P. largeni to either P. cf. neumanni 1 or P. cf. neumanni 2. The

taxonomy of the group is further complicated because P. nana does not have a precise type

locality. Perret [62] restricted the type locality of P. nana to “Dibba”, but this can either be a

town or a region in the Arsi plateau. Boehme and Roedder [64] reported an individual of this

species from the town of Bekoji, while Schick [65] found individuals that he assigned to this

species on the vicinity of Goba. No topotypic material is available for P. nana, so the possibility

exists that in fact P. cf. neumanni 3 or P. cf. neumanni Mt Gugu represent the true P. nana, and

the individuals we are calling P. nana in this study, as well as those in Freilich et al. (2014),

actually represent a different taxon.

For all of the other new species named by Smith et al., the authors do not provide any mor-

phological or meristic measurements of any of the holotypes or type material. Characters that

are known to aid in differentiating between the different species of Ptychadena were ignored

(e.g. shorter legs in P. nana while longer in P. erlangeri). Smith et al. further describe two new

lowland forms from Ethiopia (P. baroensis and P. nuerensis), but the only evidence for their

decision to describe them as new is their coalescence-based species delimitation analysis, using

a single mtDNA gene (16s). The use of mitochondrial loci for species delimitation has impor-

tant limitations, and it has been shown that a single mitochondrial marker is not appropriate

for these types of analyses and species delimitations [66].

Despite that the goal of Smith et al. was to help fix the taxonomic conundrum of the genus

Ptychadena in Ethiopia, their species descriptions are inadequate, fail to abide to the rules of

the Zoological Code, and only generate more confusion in this group. As a result, all new spe-

cies names and combinations should, at this point, be considered nomina nuda according to

the International Commission on Zoological Nomenclature [21] and thus disregarded until

further study. Given the confusion within this group as well as the morphological similarity

between taxa, a thorough taxonomic revision of Ethiopian Ptychadena is warranted and will
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certainly require the morphological (and possibly molecular) assessment of the type specimens

for P. neumanni, P. largeni, P. erlangeri and P. nana.

Important issues when applying BSD methods in Taxonomy

Since previous authors have named Ethiopian Ptychadena lineages with the sole justification of

the multi-species coalescent, we feel it is appropriate to discuss this approach in more detail.

The use of Bayesian species delimitation methods (BSD) has increased in recent years. Multi-

ple programs for conducting BSD are now available, including BPP [67], SpedeSTEM [68],

BFD� [69] and more recently PHRAPL [70], to name a few. Despite the importance of describ-

ing biological diversity of the planet, and the ability of BSD to help describe this diversity,

many authors use the results of BSD analyses as the only diagnostic evidence when naming

species [20, 71]. Several authors have pointed out multiple issues with the use of BSD as the

only evidence for describing taxa [72, 73], but we would like to emphasize a few issues, which

are particularly relevant to Ethiopian Ptychadena. First, it is important to note that species are

by definition hypotheses, which can have different amounts of support [45, 74]; the more evi-

dence, the stronger the support for the hypothesis. Eventually, the decision to formally

describe a species lays on the taxonomist, and these decisions can be difficult to make and can

have profound impacts in conservation and other areas [75]. It is also relevant to reiterate that

the speciation process is a continuum, which begins with intra-population genetic variation.

Sukumaran and Knowles [76] showed that methods using the multispecies coalescent are in

fact delimiting genetic structure, and not species. Additionally, multiple researchers have

applied BSD methods using only a few mitochondrial loci. The use of mitochondrial loci in

BSD methods has important limitations, wherein the majority of cases a single mitochondrial

marker is not appropriate for species delimitation [66]. This is true in amphibians in general

and Ethiopian taxa in particular. For instance the populations of P. cooperi from Bale Moun-

tains carry a highly divergent mitochondrial haplotype [53] that would surely separate them as

a different species, although analysis of their nuclear genome failed to find any evidence for

genetic structure with the populations on the Arsi plateau. Similarly, populations of Leptopelis
gramineus from eastern Ethiopia show a high level of differentiation for their mitochondrial

genomes, but only moderate to low differentiation when using genome-wide SNP data [55].

Lastly, the lack of appropriate sampling across a taxon’s range and not including topotypic

material in BSD analyses can be problematic and is widespread among studies [46].

BSD methods can be useful in a variety of biological studies, including the naming of new

taxa. This is especially true in organisms that are extremely difficult to differentiate with mor-

phology alone, such as fungi, bacteria, and a variety of parasites [77]. However, the use of these

methods should be regarded as a way to test different hypotheses, and not as the only method

used to diagnose species, especially in cases where morphological differences might exist, even

if they can be difficult to quantify (as in the Ethiopian Ptychadena). We agree with Bauer et al.
[72] on the need to provide morphological, ecological, or other diagnostic characters when

assigning new names to species, and that the assignment of a population to a particular lineage

does not constitute a valid diagnostic character.

Fujita and Leaché [78] argued that finding morphological characters to define species

would slow species discovery, and that multivariate analysis of morphometric data is equally as

laborious as using programs such as BPP to delimit species. We strongly disagree with this

view. In many instances, using BSD methods to identify species would be almost impossible

for local researchers, especially in developing countries (such as Ethiopia) that lack proper

resources for biological surveys. The cost associated with tissue preservation, DNA extraction,

PCR amplification, sequencing, etc. is astronomical in many areas, especially when compared
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to local wages and university resources. If one of the main goals of naming new taxa is the con-

servation of those taxa [79], as stated by many supporters of BSD-only species descriptions,

then these authors should provide local researchers means to properly identify these new taxa

as it is the only feasible way to have an impact on the conservation of those species. It is impor-

tant to point out that training in analysis of morphology or working with museum collections

is becoming sort of a dying trade. Thus, the lack of diagnostic characters might be more an

issue of proper training than an actual lack of diagnostic characters. We argue that the sup-

posed conservation benefit gained by naming taxa is outweighed by the taxonomic instability

and confusion that the sole use of BSD in describing taxa creates [72]. Unfortunately, we

believe that the misuse of Bayesian species delimitation methods (BSD) makes it easier to

name species without the need to seek further evidence to support the validity of a proposed

taxonomic decision. As stated by Stephen Jay Gould [80], “Taxonomists often confuse the

invention of a name with the solution of a problem”. The recent taxonomic literature on Pty-
chadena and other taxa confirms that this statement is still valid.
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4.

66. Dupuis JR, Roe AD, Sperling FA. Multi-locus species delimitation in closely related animals and fungi:

one marker is not enough. Molecular ecology. 2012; 21(18):4422–36. https://doi.org/10.1111/j.1365-

294X.2012.05642.x PMID: 22891635

67. Yang Z, Rannala B. Bayesian species delimitation using multilocus sequence data. Proceedings of the

National Academy of Sciences. 2010; 107(20):9264–9.

68. Ence DD, Carstens BC. SpedeSTEM: a rapid and accurate method for species delimitation. Molecular

Ecology Resources. 2011; 11(3):473–80. https://doi.org/10.1111/j.1755-0998.2010.02947.x PMID:

21481205
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